Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life (Basel) ; 10(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796544

RESUMO

Endoplasmic reticulum (ER) dysfunction is important for alpha-synuclein (αS) acquired toxicity. When targeted to the ER in SH-SY5Y cells, transient or stable expression of αS resulted in the formation of compact αS-positive structures in a small subpopulation of cells, resembling αS inclusions. Thus, because of the limitations of immunofluorescence, we developed a set of αS FRET biosensors (AFBs) able to track αS conformation in cells. In native conditions, expression in i36, a stable cell line for ER αS, of intermolecular AFBs, reporters in which CFP or YFP has been fused with the C-terminal of αS (αS-CFP/αS-YFP), resulted in no Förster resonance energy transfer (FRET), whereas expression of the intramolecular AFB, a probe obtained by fusing YFP and CFP with αS N- or C- termini (YFP-αS-CFP), showed a positive FRET signal. These data confirmed that αS has a predominantly globular, monomeric conformation in native conditions. Differently, under pro-aggregating conditions, the intermolecular AFB was able to sense significantly formation of αS oligomers, when AFB was expressed in the ER rather than ubiquitously, suggesting that the ER can favor changes in αS conformation when aggregation is stimulated. These results show the potential of AFBs as a new, valuable tool to track αS conformational changes in vivo.

2.
Neurobiol Dis ; 111: 36-47, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246724

RESUMO

α-synuclein (αS) is a small protein that self-aggregates into α-helical oligomer species and subsequently into larger insoluble amyloid fibrils that accumulate in intraneuronal inclusions during the development of Parkinson's disease. Toxicity of αS oligomers and fibrils has been long debated and more recent data are suggesting that both species can induce neurodegeneration. However while most of these data are based on differences in structure between oligomer and aggregates, often preassembled in vitro, the in vivo situation might be more complex and subcellular locations where αS species accumulate, rather than their conformation, might contribute to enhanced toxicity. In line with this observation, we have shown that αS oligomers and aggregates are associated with the endoplasmic reticulum/microsomes (ER/M) membrane in vivo and how accumulation of soluble αS oligomers at the ER/M level precedes neuronal degeneration in a mouse model of α-synucleinopathies. In this paper we took a further step, investigating the biochemical and functional features of αS species associated with the ER/M membrane. We found that by comparison with non-microsomal associated αS (P10), the ER/M-associated αS pool is a unique population of oligomers and aggregates with specific biochemical traits such as increased aggregation, N- and C-terminal truncations and phosphorylation at serine 129. Moreover, when administered to murine primary neurons, ER/M-associated αS species isolated from diseased A53T human αS transgenic mice induced neuronal changes in a time- and dose-dependent manner. In fact the addition of small amounts of ER/M-associated αS species from diseased mice to primary cultures induced the formation of beads-like structures or strings of fibrous αS aggregates along the neurites, occasionally covering the entire process or localizing at the soma level. By comparison treatment with P10 fractions from the same diseased mice resulted in the formation of scarce and small puncta only when administered at high amount. Moreover, increasing the amount of P100/M fractions obtained from diseased and, more surprisingly, from presymptomatic mice induced a significant level of neuronal death that was prevented when neurons were treated with ER/M fractions immunodepleted of αS high molecular weight (HMW) species. These data provide the first evidence of the existence of two different populations of αS HMW species in vivo, putting the spotlight on the association to ER/M membrane as a necessary step for the acquisition of αS toxic features.


Assuntos
Retículo Endoplasmático/metabolismo , Microssomos/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Retículo Endoplasmático/patologia , Humanos , Camundongos Transgênicos , Peso Molecular , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Cultura Primária de Células , Agregação Patológica de Proteínas/patologia , alfa-Sinucleína/química , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...